Index Notation Simplify Fully: 1) $3a^3b^2 \times a^5b^6$

- 2) $\frac{6f^5g^3}{3f^2g^3}$
- 3) Evaluate $27\frac{2}{3}$

Percentages and Fractions of Amounts

1) $\frac{1}{3}$ of £252

2) 40% of £420

Quick Wits

HigHer 4

Nth Term Rule

- 1) Work out the nth term rule of this sequence.
 - 5, 8, 11, 14, ...
- 2) If n is the term. What is the first integer value of n where the sequence $2n^2$ is greater than 50.

Probability

There are 300 balls in a bag in total. In the bag there are 40 more red balls than blue balls. How many blue balls are in the bag?

Drawing Graphs

1) Expand 6(3 - x)

2) Factorise $9x - 45x^2$

Expand and Factorise

Plot the graph y = 10 - 3xfor $-1 \le x < 2$.

www.n

www.missbsresources.com

Index Notation Simplify Fully: 1) $3a^{3}b^{2} \times a^{5}b^{6}$ $= 3a^{8}b^{8}$ 2) $\frac{6f^{5}g^{3}}{3f^{2}g^{3}} = 2f^{3}$ 3) Evaluate $27^{\frac{2}{3}}$ $= (\sqrt[3]{27})^{2} = 3^{2}$ = 9

Percentages and Fractions of Amounts

1) $\frac{1}{3}$ of £252 252 ÷ 3 = £84 2) 40% of £420 420 × 0.4 = £168

QJick Wits

Higher 4

Nth Term Rule

1) Work out the nth term rule of this sequence. 3n + 2

5, 8, 11, 14, ...

2) If n is the term. What is the first integer value of n where the sequence $2n^2$ is greater than 50.

 $2n^{2} > 50$ $n^{2} > 25$ $n > \pm 5$ n = 6Brobability

Probability

There are 300 balls in a bag in total. In the bag there are 40 more red balls than blue balls. How many blue balls are in the bag?

Blue = $x \operatorname{Red} = x + 40$

x + x + 40 = 300 2x + 40 = 300 2x = 160x = 80

Expand and Factorise 1) Expand 6(3 - x)18 - 6x

2) Factorise $9x - 45x^2$ 9x(1 - 5x)

Drawing Graphs

Plot the graph y = 10 - 3xfor $-1 \le x < 2$.

www.missbsresources.com